? Trung tâm gia sư WElearn chuyên giới thiệu, cung cấp và quản lý Gia sư.
? Đội ngũ Gia sư với hơn 1000 Gia sư được kiểm duyệt kỹ càng.
? Tiêu chí của chúng tôi là NHANH CHÓNG và HIỆU QUẢ. NHANH CHÓNG có Gia sư và HIỆU QUẢ trong giảng dạy.
“Bấm máy tính” là kỹ năng buộc phải có nếu như bạn muốn thi Đại học đạt điểm cao. Vì đề thi hiện nay là đề trắc nghiệm. Mà Trắc nghiệm thì không thể nào dành thời gian để giải 2 3 trang giấy được. Do đó, WElearn gia sư đã tổng hợp lại các cách giải toán 12 bằng máy tính Casio để giúp bạn có những phương pháp giải bài nhanh hơn. Cùng theo dõi nhé!
>>>> Xem thêm: Gia sư môn Toán Lớp 12
Bấm phím ALPHA kết hợp với các phím chứa biến
Phím CALC dùng để gán số vào một biểu thức
Bấm tổ hợp phím SHIFT + CALC để tìm nghiệm
Table là công cụ để lập bảng giá trị. Thông qua chức năng Table, ta có thể đoán và dò được các nghiệm của phương trình ở mức tương đối.
Chức năng MODE |
Tên MODE |
Thao tác |
Tính toán chung |
COMP |
MODE 1 |
Tính toán với số phức |
CMPLX |
MODE 2 |
Giải phương trình bậc 2, bậc 3, hệ phương trình bậc nhất 2, 3 ẩn |
EQN |
MODE 5 |
Lập bảng giá trị
|
TABLE |
MODE 7 |
Xóa các MODE đã cài đặt |
|
SHIFT 9 1 = = |
Phương pháp: Tính đạo hàm của hàm số tại các điểm cụ thể.
Phương pháp: Đối với dạng toán tìm m để hàm số đạt cực trị tại x0. Ta có nguyên tắc
Như vậy, sẽ có 2 cách để bấm máy tính.
Phương pháp: Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có dạng
Bước 1: Bấm MODE 2 để chuyển qua chế độ số phức
Bước 2: Nhập biểu thức
Bước 3: Bấm “=” để lưu biểu thức
Bước 4: Bấm CALC để gán x = i (để xuất hiện i, ta bầm ENG)
Bước 5: Nhận kết quả Mi + N => phương trình cần tìm có dạng y = Mx + N
Dùng CALC để tìm tiệm cận → tính giới hạn
Bài giải:
Đường thẳng x = x0 là tiệm cận ⇒ Điều kiện cần: x0 là nghiệm của phương trình mẫu
⇒ Chỉ quan tâm đến đường thằng x = 2, x = 3
Bài giải
Để không có tiệm cận đứng thì phương trình mẫu khi bằng 0 sẽ không có nghiệm hoặc nếu có thì giá trị đạo hàm của x tiến tới không ra vô cùng
Phương pháp:
Quan sát bảng giá trị, giá trị lớn nhất là max, giá trị nhỏ nhất là min
Đối với hàm lượng giác (sin, cos,…) thì đổi về radian bằng cách nhấn SHIFT MODE 4
Để tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f(x) ta giải phương trình f(x) – m = 0 và f(x) – M = 0
Sau khi tính ra x, nếu x thuộc đoạn đề bài yêu cầu → Chọn
Cách tìm nghiệm bằng chức năng SOLVE tuy lâu hơn nhưng sẽ chắc chắn hơn.
Phương trình tiếp tuyến có dạng d: y = kx + m
Phương pháp: Có 3 cách để giải bài toán tương giao đồ thị
Giải:
Để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
⇒ Phương trình = 0 có 3 nghiệm
Với m = 14, sử dụng lệnh giải phương trình bậc 3 MODE 5
Ta thấy x2, x3 là nghiệm phức nên phương trình này không đủ 3 nghiệm → Loại A
Với m = -14, sử dụng lệnh giải phương trình bậc 3 MODE 5
Ta thấy phương trình này có 3 nghiệm thực. Vậy đáp án sẽ là B hoặc C
Thử m = – 1 (trường hợp C) thấy có nghiệm phức → Chọn B
Phương pháp: Chuyển hết về 1 vế sau đó dùng chức năng SHIFT SOLVE
Phương pháp
Quan sát bảng giá trị và thấy không có giá trị nào để F(x) = 0 hoặc không có khoảng nào làm cho F(x) đổi dấu nên x = 0 là nghiệm duy nhất
Phương pháp:
Lưu ý:
Tương tự vậy, kiểm tra thì thấy đáp án B, C, D cùng thỏa. Vậy đáp án là D
Phương pháp:
Bài giải:
Từ ⇒ y =12log9x. Thay y vào
. Ta có
12log9x) = 0
Dùng chức năng SHIFT SOLVE để tìm x → thay x vào để tìm y
Số N được gọi là phần nguyên của một số nếu . Ký hiệu N = [A]
→ Phím Int: ALPHA +
Số chữ số của một số nguyên dương [log A ] + 1
Ví dụ: Gọi m là số chữ số cần dùng khi viết số trong hệ thập phân và n là số chữ số cần dùng khi viết số 30 ở trong hệ nhị phân. Ta có tổng m + m là
A. 18 B. 20 C. 19 D. 21
Giải: Đặt
Số chữ số của trong hệ thập phân là [k] + 1
Vậy Số chữ số của trong hệ thập phân là 10
Đặt 302=900=2h. Số chữ số của trong hệ thập phân là [h] + 1
Vậy Số chữ số của trong hệ thập phân là 10 => m + n = 20
Phương pháp:
Phương pháp: Tính giá trị tích phân bằng nút
Phương pháp
Phương pháp
Bài giải:
Đặt z = x + yi , biểu diễn số phức theo yêu cầu đề bài, từ đó khử i và thu về một hệ thức mới :
Tìm điểm đại diện thuộc quỹ tích cho 4 đáp án rồi thế ngược vào đề bài, nếu thỏa mãn thì là đúng
Ví dụ: Cho số phức z thỏa (1 + i)z = 3 – i. Điểm biểu diễn z thuộc điểm nào
A.điểm P B.điểm Q C.điểm M D.điểm N
Bài giải:
x = 1, y = -2 → Điểm Q
Phương pháp:
Nếu phương trình cho sẵn nghiệm thì thay từng đáp án
Nếu là phương trình thuần bậc 2 bậc 3 thì giải như giải phương trình
Nếu phương trình chưa z, |z|,… thì dùng CALC gán X = 100, Y = 0,01
Phương pháp:
Nhập một số bất kỳ sau đó ấn bằng để lưu vào Ans
Bấm công thức theo cú pháp sau:
Bấm dấu “=” tới khi nào thấy kết quả là một nghiệm
Tìm nghiệm dựa vào hệ thức Viet: = c/a
Phương pháp:
Nhập MODE 8. Khi đó màn hình máy tính sẽ xuất hiện nhā sau:
Nhập dữ liệu cho từng vecto. Chọn 1 để nhập cho vecto A
Chọn 1 để chọn tọa độ Oxyz
Nhập vecto A bấm “1 = 2 = 3”.
Để nhập tiếp dữ liệu cho vecto B thì bấm: MODE 8 2 1 3 = 2 = 1
Tính tích có hướng của vecto A và B bấm như sau: AC SHIFT 5 3 SHIFT 5 4
Tính tích vô hướng của hai vecto A và B bấm như sau: AC SHIFT 5 3 SHIFT 5 7 SHIFT 5 4
Nếu muốn tính thêm vecto C thì tương tự bạn nhập giá trị cho vecto C theo các công thức trên
Tính tích hỗn tạp
Như vậy, bài viết đã giúp bạn tổng hợp Tất Tần Tật Cách Giải Toán 12 Bằng Máy Tính Không Thể Bỏ Qua. Hy vọng những kiến thức mà bài viết chia sẻ có thể giúp bạn “giải quyết” các bài toán cách nhanh chóng và gọn gàng hơn.
Xem thêm các bài viết liên quan
? Trung tâm gia sư WElearn chuyên giới thiệu, cung cấp và quản lý Gia sư.
? Đội ngũ Gia sư với hơn 1000 Gia sư được kiểm duyệt kỹ càng.
? Tiêu chí của chúng tôi là NHANH CHÓNG và HIỆU QUẢ. NHANH CHÓNG có Gia sư và HIỆU QUẢ trong giảng dạy.
Bài viết cùng chủ đề